Multivariate combination of quantitative T_2^* and T_1 at 7T MRI detects in vivo subpial demyelination in the early stages of MS.

Gabriel Mangeat1,3, Celine Louapre1,4, Elena Herranz2,4, Constantina A. Treaba1,4, Russell Ouellet3, Jacob A. Sloane4, Eric C. Klawitter3,4,6, Julien Cohen-Adad1,2, Caterina Mainiero1,4.

1 Institute of Biomedical Engineering, Polytechnique Montréal, Montréal, QC, Canada; 2 Functional Neuroimaging Unit, CRG/ICG, Université de Montréal, Montréal, QC, Canada; 3 Althinos A. Martins Centre for Biomedical Imaging, MGH, Charlestown, MA, USA; 4 Harvard Medical School, Boston, MA, USA; 5 Beth Israel Deaconess Medical Center, Boston, MA, USA; 6 Department of Neurology, MGH, Boston, MA, USA. Both authors contributed equally to this work.

Backgrounds and goals

Subpial demyelination occurs early in the course of multiple sclerosis (MS), but in vivo detection with MRI is challenging due to low contrast at conventional field strengths. Quantitative mapping of T_2^* and T_1 relaxation rates at 7T MRI was shown to be sensitive to cortical myelin content [1-2], and to cortical MS demyelination associated with clinical measures [3]. Given that several confounds hamper the specificity of both metrics, we used multivariate statistics to combine cortical T_1 and T_2^* maps to gain specificity to subpial demyelination in early MS. This approach has shown improved sensitivity to cortical myelin content in healthy subjects [4].

Methods

Acquisition: In 5 healthy controls (HC, 34±12 years, 3 females) and 10 early MS patients (37±9 years, 8 females; disease duration≤3 years, median T_1 range Expanded Disability Status Scale score = 0.3) we obtained 7T high resolution quantitative T_2^* ($0.5 \times 0.5 \times 0.5 \text{ mm}^3$) and T_1 ($0.75 \times 0.75 \times 0.75 \text{ mm}^3$) maps. For each subject, T_1 and T_2^* were sampled at 25%, 50% and 75% depth from the pial surface. Scan parameters were: TR/T1=3680/3.12+3.32[1..6]ms for T_2^* and MP2RAGE sequence, double inversion gradient echo. TR/T1/TE=5000/2.93[900 3200]ms for T_1. Raw images are shown in figure 1A.

Processing: For each subject, T_1 and T_2^* were sampled at 25%, 50% and 75% depth along the cortex ($Paiol = 0\%$; $WM = 100\%),$ figure 1A. Then, we applied a first-order correction for partial volume effect to both metrics and a spatial Independent Component Analysis was used to extract the shared myelin related signal in T_1 and T_2^* maps (figure 1B) thus creating the Combined Myelin Estimation (CME), a new metric more specific to myelin than T_1 or T_2^* separately, as previously done in [4].

Statistics: A General Linear Model (GLM), including age and gender as adjustment factors, was used to compare T_1, T_2^* and CME in MS patients vs healthy controls in whole cortex and in selected Brodmann areas (BA).

Results

Figure 2 shows the myelin estimated maps averaged across HC and MS groups. We can visually observe a qualitative loss of myelin around the motor, visual and auditory cortices. Quantitatively, in the whole cortex, CME was decreased while T_1 and T_2^* were increased in MS vs HC. CME=47±0.8% vs $49\pm1.3\%$; $T_1=1727\pm56\text{ ms}$ vs $1654\pm70\text{ ms};$ $T_2^*=34.0\pm1.2\text{ ms}$ vs $33.0\pm1.1\text{ ms}.$ A statistical analysis showed a significant decrease of CME, reflecting a loss of myelin ($p<0.05$, whole cortex GLM), whereas variations of T_2^* and T_1 alone were not significant. Within Brodmann areas, the GLM of CME showed significant loss of myelin in sensory, motor (BA1, BA4, BA6) and prefrontal (BA10) areas ($p<0.05,$ Figure 3). A significantly higher T_1 was observed in frontal cortex (BA45, $p<0.05$). No regions were significantly different using T_2^*.

Discussion

CME, a multivariate statistical framework combining quantitative T_1 and T_2^*, provides improved resolution 7T scans. It shows increased specificity to detect changes in early MS compared to T_1 and T_2^* separately. Furthermore, it supports subpial demyelination as an early event in MS, even in the presence of mild neurological disability.